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Defect of the Five-Thirds Law 
Using the Wiener-Hermite Expansion 
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Application of the refined Wiener-Hermite expansion with moderate to high 
Reynolds numbers Re to homogeneous, isotropic turbulence is presented. The 
results show a defect to Kolmogorov's "five-thirds law,'" increase in the absolute 
value of the exponent comparable with many theoretical predictions. Midrange 
spectra up to fluctuation Reynolds numbers of l0 s show little, if any, 
dependence of the defect on Re, as long as the initial spectra do not deviate too 
far from their equilibrium states. The renormalization scheme has also been 
proven to have no effect on the final shape of the spectrum. 

KEY WORDS: Wiener-Hermite expansion; Kolmogorov's five-thirds law; 
energy spectrum; energy dissipation fluctuation; defect. 

1, I N T R O D U C T I O N  

The influence of the in te rmi t tency  of the kinetic  energy d iss ipa t ion  (see 
ref. 1) on K o l m o g o r o v ' s  "f ive-thirds law" for the veloci ty spec t rum E(k)  in 
the iner t ia l  subrange,  1/L ~ K ~ 1/11, L the ou te r  scale and  q the d iss ipa t ion  
length was first no ted  in ref. 2 some t ime after the fo rmula t ion  of  
K o l m o g o r o v ' s  theory.  (3J M a n y  au thors  have worked  on this ques t ion  since 
then. (4 7) 

The  quan t i ty  

= 0.5v(Oui/~xj + ~ui/~xi) (1) 

is a r a n d o m  var iable  undergo ing  cons iderab le  f luc tuat ion  in space and  
time, where  v is the k inemat ic  viscosi ty and  ui, uj are  the c ompone n t s  
of the veloci ty  field u(x, t). F o r  this reason (as has been shown in the 

1 Mechanical, Aerospace and Nuclear Engineering Department, University of California, Los 
Angeles, California 90024. 

2 Smith, Fause & Associates, Culver City, California 90230. 

1089 

0022-4715/89/0600-1089506.00/0 ~1 1989 Plenum Publishing Corporation 



1090 Chung and Meecham 

above references), the Kolmogorov five-thirds law deduced using simple 
dimensional analysis cannot be exact. Deviation from the five-thirds law 
originating from the intermittence of the energy dissipation is slight and is 
difficult to determine experimentally. However, it should be possible to 
calculate it analytically with a proper theory. 

2. REVIEW OF W I E N E R - H E R M I T E  EXPANSION 

We use the Wiener-Hermite (WH) expansion, which has been used 
successfully to treat decaying, homogeneous and isotropic turbulence/8~ 

The central idea of the WH theory is to expand the turbulent velocity 
field (or any random quantity) with respect to a complete set of stochastic 
functionals such that the first term in the expansion has Gaussian statistics 
and higher order terms represent deviations from Gaussianity. The expan- 
sion is in essence one about Gaussianity designed to take advantage of 
the nearly Gaussian (in many ways) nature of turbulence. (9) Two basic 
advantages of the WH expansion should be emphasized: the results are 
necessarily realizable (all energy spectra are positive) and the theory is 
deductive, using no adjustable or quasiempirical parameters or functions. 

The basic element of the Wiener-Hermite expansion is the white noise 
process. Consider a scalar function H~ of a scalar variable defined as 
follows. Divide the x axis into cells of width A. The value of H "1 in each 
cell is selected independently from a Gaussian distribution with a variance 
A -1. As we let A ~ 0 ,  H]l)(x) approaches H(1)(x), the idealized, one- 
dimensional, white noise process. 

This can be easily extended to the three-dimensional vector case by 
replacing the cells of width A by cells of volume A 3, the variance A -~ by 
A -3, and the process HC~)(x)  by the vector Hll)(x). This vector has the 
following properties: 

(H l l ) (x ) )  = 0  

(H~l)(x) H~ 1)(x') ) = bi jb (x  - x') (2) 

with 3 0 the Kronecker delta and 6(x) the Dirac delta function. 
A physical random process ui(x) which has a Gaussian distribution 

can be written as 

u~(x)_- I " ' -  Ki~ (x, x') H~l)(x ') dx' (3) 
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where Kli~)(x, x') is a "nonrandom" function, and summation on repeated 
indices is implied. The correlation tensor of uz is 

f Kia (1) , (ui (x)  u j (x ' ) ) ,=  (1)(x, x") x ' )  dx" d x "  Kj~ (x ,  (4) 

When the process is statistically homogeneous, "(1)Cx ~i~ t , x') can be written as 
(1) Ki~ (x - x'). 

For  a non-Gaussian process we define polynomial combinations of the 
white noise process in such a way that they are mutually, statistically 
orthogonal. The first few are 

= 1 

H (2)~v X2) = Ht~l)(xl) H ~  1 ) (x2)  - -  c]~flc~(x 1 - -  xv )  

H t 3 ) t v  ( I ) (x3)  (5 )  :/~-//~1, x2, x3)=  U(~l)(xl) H~I)(x2) S r 

- -  H ~ i ) ( x 2 )  (~flyS(x 2 - -  x 3 )  

- -  H f i  1)(x2) (~y cz (~(x3 - -  X l )  - -  "*TJ(1)ivv t~3 ) ~xfl (~(x i - -  x2 )  

Statistical orthogonality means that 

(H(m)H v') ) = 0  for m # n  (6) 

Each functional also has zero statistical mean: 

( H  (m)) = 0  (7) 

A statistically homogeneous random process which has zero mean and is 
not Gaussian can be written in terms of Wiener-Hermite functionals as 
follows: 

= f x ' / . ; , ( x ' / d x ,  

f f  f~(2){v x t ' )  L/(2}/V' x " ) d x ' d x " +  ... (8) 

If the process does not deviate greatly from Gaussian form, there exists an 
expansion which converges quickly. The velocity field of a turbulent fluid 
is generally of this kind. But, for rigid convergence, it is necessary to alter 
the choice of the white noise process at later times. 
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For homogeneous turbulence it is convenient to work in wavenumber 
space. We define the Fourier transform of a velocity field u,(x) as 

u~(k) = f dx u~(x) exp(ik, x) (9) 

In this representation u(k) becomes 

u,(k) = K~P(k) HJ.l~(k) 

(2re) -3 f K (2)tt" , + ~ t - , - k ,  k') r4(2)tt" "*jz , = - k ,  k ' ) d k ' +  .-- 
J 

(10) 

For more details see ref. 8. 
If we take the Fourier 

we get 
transform of the Navier-Stokes equation, 

(O/&+vk2)u~(k,t)=(2~) 3ip~(k)ktfuj(k-q,t)u~(q,t)dq (11) 

where 

P~ (k) = ~o - kikj k2 (12) 

Perform the following steps: (a) substitute the equation for u(k), Eq. (10), 
into the Navier-Stokes equation in wavenumber space, keeping only the 
first two terms of order (K(2~), assuming that the turbulence is, in a sense, 
nearly Gaussian; through (b) multiply the resulting equation by H (l) and 
take the ensemble average; (c) multiply the equation from part (a) by H ~2~ 
and take the ensemble average. From (b) and (c) we have coupled 
differential equations for K ~) and K ~2), respectively. In these two equations 
there are terms containing/: / l~ and/:/~2~, which will be specified later. 

For incompressible, homogeneous, isotropic turbulence, the first 
kernel Kbl)(k) can be written in terms of a scalar generator U(k): 

K,~)(k) = U(k) P,j(k) (13) 

If we further assume that the turbulence is exactly Gaussian at time t = 0, 
the second kernel can at all later times be written in terms of a single scalar 
function F(kl,  k2): 

K 2)[k, k2)= i(kt +k2)m P+~(k~ +k2){Pjm(kl) Pt~(k2) F(k~ k2) /j/ ~ *- 

+ Pjn(kl) Pzm(k2) F ( k 2 ,  kl)} ( 1 4 )  
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Consider /:/(~1 and /=/~2). The second can be determined once the first is 
defined. The quantity /:/(~) is just a random process. It can be argued ~1~ 
that/:/(1~ can be written as 

/:/l~'(k) = f L'~)(k - k', k') Hr - k', k') dk'  (15) 

where 1 ~2) has to satisfy a measure-preserving condition. The final form of ~ i j l  
L(2) �9 u~ IS obtained independently in refs. 10 and 1 1 as 

L~2)tk k2)= �89 -3 (kl +k2)~ Pi~(kl +k2) P~,(k2) P~j(kl) V(kl) (16) 07 ~ 1~ 

The function V(k) is defined here as U(k), but could more generally be 
arbitrary. We choose U in order to produce the Gaussian equipartition 
solution of the inviscid equation, v = 0. Other choices must be judged by 
the rapidity of convergence of the representation in particular applications. 

The final forms of the equations for the two kernels K ~1 and K (2) in 
terms of the scalar functions U and F are (y = cos 0, 0 the angle between 
k and q) 

(a/Ot + vk 2) U(k) 

zo 1 

= - (27z)-2 ~0 ~ f {P4F(k, q )+  (P2 + P3)F(q, k)} dy U(q) q2 dq 
--1 

"~ (2~)--2 fo m f~l  {P2F(N + q' - q )  

+ P~Ft -q ,  k + q)} + v(q) q~- dq t17) 

and 

(0/0t + Ik~ + k212 v) F(k~, k2) = �89 U(k2) - �89 ) U(Ik~ + k21) (18) 

where', 

P 2  = k=k~P>,,5(k) PTa(q) P~,~(k + q) 

P3 = k:k,P;.a(k) P:~(q) P>.~(k + q) 

P4 = k:q,P,/,(k){e:~(q) e+~(k + q) + PT~(q) P:~(k + q)} 

(19) 

We can now write out the energy spectrum in terms of K ta) and K (2). 
The transfer can be shown to be conservative. We let portions of the energy 
E~ and E2 correspond to contributions from K Ill and K (2). They are, 
loosely speaking, the Gaussian and non-Gaussian parts of the energy. 

The moving base L (2) described above gives solutions for short times 
and moderate Reynolds number only. When t increases, E2 grows from 
zero and eventually becomes bigger than El,  which violates our Gaussian 
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approximation. In other words, the expansion is then poorly convergent. 
Larger Re worsens the situation. 

To remedy this, Hogge and Meecham ~8~ devised the renormalization 
procedure. The idea is to use a measure-preserving transformation so that, 
simultaneously; (1) the energy spectrum is preserved and (2) the size of E2 
and the error in the transfer are minimized. The procedure is as follows: 
(a) when E2 becomes too large, the integration is stopped; ( b ) U  is 
calculated as if all the energy is in El,  call it U'; (c) a form of F is assumed, 
called F', with parameters to be determined; (d) E2 is expressed in terms 
of F';  (e) the transfer function T(k) is expressed in terms of U' and F' ,  
called T'(k); (f) the quantity A2=~ { T ( k ) - T ' ( k ) } 2 d k  is calculated in 
terms of the parameters for F'; (g) E2 and A 2 are minimized 
simultaneously with respect to these parameters, which are evaluated; 
(h) the F thus found is used to correct U using E = E1 + E2. The result of 
these steps is a new set of { U, F} defining a measure-preserving transfor- 
mation which gives smaller E2 so as to improve the two-term truncation of 
the WH expansion and preserve the transfer function and the total energy 
E. Note that we renormalize at fixed times. After the new U and F are 
obtained, the integration is resumed until E2 increases again, at which time 
the renormalization procedure is repeated. 

In this work we use a WH expansion with a time-dependent base 
and with the renormalization scheme to calculate the evolution of the 
turbulence measured and simulated by the numerical experiment. 

3. RESULTS ON THE DEFECT OF THE F I V E - T H I R D S  
L A W  USING THE W I E N E R - H E R M I T E  
E X P A N S I O N  A N D  C A L C U L A T I O N S  

Preliminary results of Chung and Meecham ~12~ suggested that for a 
fluctuation Reynolds number of 1000, all of the initial spectra k 1, k 7/5, 
k 5/3, k 2 transform to slopes near - 5 / 3  (-1.667),  but decreased by 
+0.12, approximately. However, there were various indications in this 
early work that a larger Reynolds number was needed to reach the usual 
defect. 

The Reynolds number was accordingly raised to 10,000, with different 
initial spectra and renormalized at every second time step. For initial 
spectra that do not deviate too much from the five-thirds law (between 
-1.342 and -2.138 in the exponent, see Table I), the resulting slopes were 
determined by applying linear regression to the fairly straight portion of 
the energy spectrum in inertial subrange, between wavenumbers 2.000 and 
11.314. After a dimensionless time of two (outer scaling of time, kouot, 
throughout), the slopes all fall within a range between - 1.691 and - 1.728. 
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Fig. 1. Slope transition from t = 0.0 to t = 2.3. The slope for each initial spectrum S(0) is 
generated by the generalized Kotmogorov spectrum formula ~16) and is taken from the inertial 
subrange and calculated by least-square fit from k = 2.000 to k = 11.314. Reynolds number 
Re= 10,000. ( + )  S ( 0 ) =  -1.521, ( , )  S ( 0 ) =  -1.431, ( .~) S ( 0 ) =  -1.610, ( X )  S ( 0 ) =  -2.138. 
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Fig. 2. Slope transition from t=0 .0  to t =2.3. The slope for each initial spectrum is 
generated by the generalized Kolmogorov spectrum formula (16) and is taken from the inertial 
subrange and calculated by least-square fit from k=2.000 to k =  11.314. Reynolds number 
Re=  10,000. ( + )  S ( 0 ) =  -1.521, (*) S ( 0 ) =  -1.698, (E]) S ( 0 ) =  --1.787, ( ~ )  S ( 0 ) =  --1.963. 
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That is, there is a decrease of about 0.024 to 0.061 in the exponent of the 
five-thirds law. For dimensionless time exceeding 1.8, in most cases the 
slope reaches its (just given) asymptotic value and stays there with but 
small fluctuation (as the Reynolds number drops at later time). 

Various different Reynolds numbers were run with the same initial 
spectra (and different initial spectra). From a series of results we find that 
using an equilibrium initial spectrum in the generalized Kolmogorov spec- 
trum formula (actual slope calculated from linear regression in the inertial 
subrange stated above for this initial spectrum turned out to be -1.521; 
see Table I), between fluctuation Reynolds number 2000 and 108, most of 
the resulting slopes, after t = 2, fall within - 1.702 and - 1.717. As a matter 
of fact, over a wide range of Reynolds numbers, from 2500 to 3000 and 
from 10,000 to 20,000, the slopes resulting from a - 5 / 3  initial spectrum all 
approach a value of -1.712,  which is about the value of - 5 / 3 - # / 9 ,  a 
frequently predicted value, as noted above. (4-6~ 

For  all the spectra in this work, large wavenumbers near the dissipa- 
tion range, i.e., near k~ are not resolved. The dimensionless wavenumber 
goes up to about 181, a designated cutoff wavenumber in this calculation. 
However, it is also shown in the Appendix that this (the cutoff) does not 
seriously affect the midrange spectral results. 

Figures 1-5 show that the slopes of the energy spectra for various runs 

Table I. Slopes for Various Reynolds Numbers and Initial Spectra at  t - - 2 . 3  

Slope for given initial spectrum S(0) 

Re -1.252 -1.342 -1.431 -l.521 1.609 -1.698 -1.787 -1.963 2.138 -2.485 

1,663 -1.698 -1.623 
2,000 -1.702 
2,500 -1.711 
3,000 -1.713 
5,000 1.717 -1.727 

10,000 1.683 -1.696 -1.707 1.714 -1.721 -1.726 -1.728 -1.726 -1.703 1.697 
12,500 -1.712 
15,000 -1.691 1.712 
16,600 -1.712 1.725 
16,630 -1.712 
20,000 -1.711 

100,000 -1.708 -1.615 
200,000 -1.708 
500,000 -1.695 -1.707 -1.717 

1,000,000 -1.707 
1.0e + 08 -1.707 
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number Re is: ( + )  104 , (*) 105 , (A)  106 , ( ~ )  108 . 



1098 Chung and Meecham 

with different Reynolds numbers and/or different initial spectra approach 
the value of -1 .712  after a dimensionless time of two. Figures 6-10 are 
energy spectra for various combinations of Reynolds numbers and initial 
spectra. Figures 1 and 2 show runs with Reynolds number 104 but with 
different initial spectra. Figures 3 and 4 show runs with the same initial 
spectrum ( -1 .521 as shown, but entered with - 5 / 3  in the Kolmogorov 
generalized spectrum) and different Reynolds numbers. Note that over a 
wide range of Reynolds numbers, from about 3000 to 108 , the transition of 
the slope of the energy spectrum does not vary much from run to run. 
Figures 6 and 7 are energy spectra of runs with the same Reynolds number, 
104, but with different initial spectra. Figures 8 and 9 are spectra of runs 
with the same initial spectrum and different Reynolds numbers. Note that 
these energy spectra collapse on each other over a large portion of the 
spectrum curve except at the largest wavenumbers, which proves that the 
influence of the Reynolds number on the initial subrange is small. Table I 
lists the slopes after a dimensionless time of two for various runs with 
different Reynolds numbers and initial spectra. 
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The above results show a defect in Kolmogorov 's  five-thirds law very 
close to what others have predicted, (4 7) that is, a decrease of 0.045 in the 
exponent (an increase in absolute value) from the original five-thirds law. 
It should be emphasized that the Wiener-Hermite  expansion is being 
severely pushed at a fluctuation Reynolds number of 108 (large wave- 
numbers near the dissipation range were not resolved, as mentioned 
above), an extremely large value not obtainable using other methods. 
Nevertheless, we feel that these results are reliable.(8'91 There is a suggestion 
that the defect may slightly reduce as decay time increases (fluctuation 
Reynolds number  decreases). From the computed results we also find that 
the dependence on the initial spectrum is small, although its effect is greater 
than that of the Reynolds number. In fact, with the same initial spectra, the 
longer time spectra resulting from different Reynolds numbers coincide 
with each other over a large spectral region except at the largest wave- 
numbers. There we may have (WH expansion) truncation error due to 
higher-order non-Gaussian contributions. Furthermore,  and more impor- 
tantly, for the highest Reynolds numbers, the wavenumber range at and 
near the dissipation wavenumber is not resolved. This, it is seen, does not 
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S(0)=-1.521; (,)Reynolds number Re=16,630, S(0)=-1.698; (Z])Reynolds number 
Re = 5000, S(0) = -1.963; ( x ) Reynolds number Re = 500,000, S(0) = -1.963. 
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affect midrange spectral values, however. Other  cases with different 
combinat ions  of  initial spectra and Reynolds numbers,  within the ranges 
ment ioned above also give consistent resulting slopes. 

Al though we were not  able to get comparable  results outside the initial 
spectral values and Reynolds numbers  ment ioned above (i.e., initial spectra 
smaller than - 1 . 3 4 2  or larger than - 2 . 1 3 8  and Reynolds numbers  smaller 
than 1663), we noted that  for equilibrium initial spectrum, the Reynolds 
number  can be pushed to as high as 108 and the resulting slope only differs 
slightly f rom that  of the Reynolds number  105 . To our  knowledge this is 
the first deductive theory to calculate midrange spectra to such Reynolds 
numbers.  

F r o m  a dimensional  argument,  in order to get a defect from the 
five-thirds law, we must  introduce a parameter  other than 8. The only 
parameters  available are those from the energy range, either U (or L) 
or  the viscosity v. If  the latter, the defect would be Reynolds number  
dependent,  but  our  calculations seem not  to support  such a dependence: 
the defect for the most  par t  appears to be independent of Reynolds 
number.  Then, dimensionally we are forced to the conclusion that  the 

E n e r g y  E(k) 
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0 ,01  ~ 
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1 ,0OOE-O7 

1 ,0OOE-O8 

t=O00 , 1  t=010 

--,t4-- t=020 NN=3 -e- -  t=200 NN=3 

Fig. 11. Energy spectrum at (11) t=0.00, (+) t =0.10, (,) t=0.20, (O) t=2.00. The slope 
for the 'initial spectrum is generated by the generalized Kolmogorov spectrum formula u6) 
S(0) = 1.521 and is taken from the inertial subrange and calculated by least-square fit from 
k = 2.000 to k = 11.314. Reynolds number Re = 1000. For t = 0.20 and t = 2.00, NN (the renor- 
malization rate plus 1) is equal to 3, i.e., renormalization occurs at every other time step. 
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defect, if present, must be due to energy range dependence, presumably a 
"leapfrogging" of (a small amount  of) energy from the energy range into 
the high-wavenumber range. 

One way to actually calculate the leapfrog transfer would be to 
calculate the function T(k, k') in the asymptotic range for k ~ k', the energy 
range wave number, and k'>>k; there should be a very small but finite 
transfer. Since the function of T is itself very small, it would be very difficult 
to make a reliable calculation of this asymptotic behavior. 

The preliminary results of our previous work showed that the devia- 
tion in the five-thirds law of the energy spectrum due to the fluctuation of 
the energy dissipation is about  0.12. This value is very close to #/3 predic- 
ted by some early workers in turbulence/7) The # is hypothesized to be 
about 0.41 by many authors. (13) It was suggested (4-6) that the defect for the 
five-thirds law should be #/9, based on the assumption of Kolmogorov 's  
log-normal distribution for kinetic energy dissipation in their models. The 
results of ref. 12 showed an increase by 0.12 in the exponent of the five- 
thirds law (i.e., - 5 / 3  +/~/3) for the structure functions and the spectrum 

E n e r g y  E ( k }  

.35 71 1.4 2.8 57 11 28 45 91 181 

Wavenumber k 

t = 0 2 0  NN=3 ~ t = O 2 0  NN=5 

+ t=2.00 NN=3 ~ t = 2 0 0  NN=5 

Fig. 12. Energy spectrum at (*) t=0.20,  N N = 3 ;  ( [ ] ) t=0 .20 ,  N N = 5 ;  ( A ) t = 2 . 0 0 ,  
N N = 3 ;  ( A ) t = 2 . 0 0 ,  N N = 5 .  The slope for the initial spectrum is generated by the 
generalized Kolmogorov spectrum formula ~6) S(0)= -1.521 and is taken from the inertial 
subrange and calculated by least-square fit from k=2.000 to k =  11.314. Reynolds number 
Re = 1000. NN is the parameter in the program that controls the renormalization frequency. 
NN = 3 represents that renormalization occurs at every other time step; NN = 5 represents 
that renormalization occurs at every four time steps. 
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of turbulence. However, other authors predicted that there should be a 
decrease in the exponent (i.e., - 5 / 3 -  #/9 or - 5 / 3 -  #/3). After comparing 
the above three different predictions with measured data in ref. 14, we 
found (as has been observed before) that one cannot tell which one of the 
three is best fitted by the data given the accuracy of the measurements 
reported. 

The (very small) effect of our renormalization scheme on the final 
form of the energy spectrum was examined by runs with smaller Reynolds 
numbers and various renormalization rates. The results and discussion are 
included in the Appendix. 

We have also developed a set of equations and program code that will 
calculate the fourth-order longitudinal structure function which is more 
sensitive to the Kolmogorov defect, DLLLL(r ) - - - - ( [UL(M' ) - -uL(M)]  4) = 
((U'--U)4),  where M ' = x + r ,  M = x ,  and r is the separation distance 
of the two points, and UL(M' ) and UL(M) are the components of the 
fluctuating velocity at the two points in the direction of the separation. We 
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Fig. 13. Energy spectrum at ( , ) t = 0 . 2 0 ,  N N = 3 ;  ( x ) t = 0 . 2 0 ,  N N = 7 ;  ( O ) t = 2 . 0 0 ,  
N N = 3 ;  ( X ) t = 2 . 0 0 ,  N N = 7 .  The slope for the initial spectrum is generated by the 
generalized Kolmogorov spectrum formula (161 S ( 0 ) =  --1.521 and is taken from the inertial 
subrange and calculated by least-square fit from k = 2 . 0 0 0  to k =  11.314. Reynolds number 
Re = 1000. N N  is the parameter in the program that controls the renormalization frequency. 
NN = 3 represents that renormalization occurs at every other time step. NN = 7 represents 
that renormalization occurs at every six time steps. 
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have not yet obtained results for the fourth-order longitudinal structure 
function, which in ref. 15 is claimed necessary for obtaining a 
distinguishable experimental defect (from the five-thirds law). 

APPENDIX .  THE EFFECT OF R E N O R M A L I Z A T I O N  ON 
THE SLOPE OF THE ENERGY S P E C T R U M  
IN THE INERTIAL S U B R A N G E  

Current results of high-Reynolds-number runs were renormalized at 
every second dimensionless time step. Renormalization less often than this 
results in a hump in the mid- to large-wavenumber range of the energy 
spectrum, which, because of worsening convergence, produces unreliable 
results. To find out the influence of our renormalization scheme on the final 
spectrum, we ran the program with smaller Reynolds numbers, such as 
1000 and 800. Hogge (i6) obtained reasonably good results using Reynolds 
numbers of this order. 
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Fig. 14. Energy ratio at (.) t -  0.10, after renormalization; ( + )  t -  0.10, before renormaliza- 
tion; ( [ ] )  t = 0.20, before renormalization; (O)  t -  0.20, after renormalization. The slope for 
the initial spectrum is generated by the generalized Kolmogorov spectrum formula ~ie S (0 )=  
-1.521 and is taken from the inertial subrange and calculated by least-square fit from 
k-2.000 to k -  11.314. Reynolds number Re- 1000. The parameter in the program that con- 
trois the renormalization frequency NN = 3, i.e., renormalization occurs at every other time 
step. 
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Results from runs for Reynolds number 1000 with an initial spectrum 
similar to Kolmogorov's generalized spectrum type (16/show that the renor- 
realization has little influence on the slope of the energy spectrum in the 
inertial subrange (see Figs. 11-13). The calculated inertial range slopes 
before and right after the renormalization are the same. The slopes at the 
corresponding time step following renormalization are different by only 
0.3~0.5 % between runs with or without renormalization, among the bulk 
of our results. Figures 11 13 show a series of spectra with different renor- 
malization rates. The slope for the initial spectrum was generated by the 
generalized Kolmogorov spectrum formula, S (0 ) - - -1 .5 2 1 .  The slope is 
taken from the inertial subrange and calculated by least-square fit. The 
Reynolds number is 1000. N N - 1  in these figures stands for the rate of 
renormalization. N N - - 3  means that renormalization occurs at every 
second dimensionless time step, NN = 5 means that renormalization occurs 
at every fourth dimensionless time step, and NN = 7 means we renormalize 
the run every six dimensionless time steps. 
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Fig. 15. Energy ratio at t = 0 . 2 0 .  The slope for the initial spectrum ~s generated by the 

generalized Kolmogorov spectrum formula 116) S(0)=  -1.521 and is taken from the inertial 
subrange and calculated by least-square fit from k = 2.000 to k = 11.314. Reynolds number 
Re=1000.  (*) N N = 5 ,  before renormalization, (c3) N N = 3 ,  before renormalization, 
(O)  NN = 3, after renormalization, (A)  NN = 5, after renormalization. NN is the parameter 
in the program that controls the renormalization frequency. NN = 5 represents that renor- 
malization occurs at every four time steps. NN = 3 represents that renormalization occurs at 
every other time step. 
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However, the ratio between the second term of the energy spectrum 
E2(k) and the so-called Gaussian part  of the energy spectrum El(k) is 
drastically changed (see Figs. 14 and 15). This is because we redistribute 
the energy in such a way that most of the energy would be concentrated 
in the Gaussian part  while retaining the spectrum itself: the measure- 
preserving transformation. Figures 14 and 15 show the ratio between the 
energy correction term E2 and the energy Gaussian term El. In these 
figures results are given for both before renormalization and after renor- 
malization for the same time step. From these ratios we see that energy 
transfer from the Gaussian term to the correction term is so fast that at a 
fourth dimensionless time step before renormalization, with N N  = 5, we 
will have eight k-value terms such that E2(k)~> E~(k). Such is not the case 
for N N  = 3 runs, which renormalize every two dimensionless time steps, 
and have only four to five k-value terms that show E2(k)/> El(k). 

Comparison between runs with different renormalization rates shows 
that the less often we renormalize the run, the less reliable are the results 
we get, due to the fact that at the large-wavenumber end, more and more 
terms of E2(k) exceed the corresponding terms in El(k) because of poor 
convergence. We must stop the procedure at a certain time step and 
redistribute the energy. At a sixth dimensionless time step without renor- 
realization we would have 10 k-value terms in the spectrum such that 
Ez(k) f> El(k), making the inertial subrange results unreliable. 
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